Reactions of iridium hydride pincer complexes with dioxygen: new dioxygen complexes and reversible O_2 binding \dagger

D. Bridget Williams,^a Werner Kaminsky, ϕ James M. Mayer^{*a} and Karen I. Goldberg*^a

Received (in Berkeley, CA, USA) 18th February 2008, Accepted 10th June 2008 First published as an Advance Article on the web 4th August 2008 DOI: 10.1039/b802739k

The reaction of molecular oxygen with iridium pincer hydride complexes, $(^{tBu}PCP)Ir(H)(X)$ $[^{tBu}PCP = \kappa^3-C_6H_3(CH_2P^tBu_2)_2$, $X = Ph, H, CCPh, results in O₂ induced reductive elimination and$ formation of the novel dioxygen complexes $(^{tBu}PCP)Ir(O_2)_n$ $[n = 1 (7), 2 (6)].$

Organometallic reactivity is utilized in a range of organic transformations, but homogeneous organometallic oxidation chemistry remains relatively under-developed.¹ Molecular oxygen is the most attractive terminal oxidant for chemical processes in terms of cost, atom economy, and the potential for few byproducts.¹ Recent studies have described elegant palladium catalysts for the aerobic oxidation of alcohols and other substrates, and have implicated mechanisms where $O₂$ serves to re-oxidize the palladium and does not interact directly with the substrates.^{1a} Oxidation of Pd⁰ species by O_2 to form Pd^{II} peroxo complexes and insertion of O_2 into Pd^{II}–H bonds have been proposed as oxygen activation steps in these transformations. Both types of reactions have been observed in model Pd systems.^{1a,2} Understanding the various modes of reactivity of oxygen with organometallic complexes will be key to developing effective homogeneous catalysis with this oxidant.

Reported here are reactions of $O₂$ with the iridium pincer hydride complexes ($\binom{Bu}{PCP}$ Ir(H)(X) [X = Cl (1),^{3a} Ph (2),^{3b} H (3),^{3c} OH (4)^{3d} and CCPh (5)^{3e}] [^{tBu}PCP = κ^3 -C₆H₃(CH₂P^tBu₂)₂]. Our long-term goal is to couple O_2 -reactivity with the ability of such iridium pincer complexes to catalytically activate C–H bonds in saturated hydrocarbons.⁴ The chemistry described here involves loss of H–X and reversible binding of O_2 to form monoand bis-dioxygen complexes. Reactions of iridium compounds with O_2 to form Ir(O_2) species are well known, originating with Vaska's complex.⁵ The products reported here, however, include an unsaturated iridium peroxide $⁶$ and the first late-transition</sup> metal bis-dioxygen complex.

The hydride-chloride complex, $({}^{tBu}PCP)Ir(H)(Cl)$ (1), is unreactive with 1 atm of O_2 (research grade, < 0.5 ppm H₂O) in benzene- d_6 over 12 h at 343 K. This is surprising given the unsaturated nature of complex 1. In contrast, the phenyl-hydride complex 2 reacts rapidly with 1 atm O_2 in benzene solution at 298 K to give two species, 6 and 7, in addition to small amounts of unidentified products (¹H NMR: δ 10.7 (s), 15.8 (s)). Clean separation of 6 or 7 from these impurities has not been achieved, in part because they slowly decompose in solution. Isolated 7, however, can be stored in the solid state for several months. Both 6 and 7 have ¹H and ³¹P{¹H} NMR spectra that indicate C_{2v} symmetry, with equivalent phosphorus nuclei, methylene protons and 'Bu groups.7

The ratio of 6 to 7 depends on the concentration of oxygen in solution. Under 5 atm O_2 at 25 °C, 1 is converted completely to 6, and X-ray quality crystals of 6 were grown from pentane under these conditions. $\dagger \dagger$ Structure solution was accomplished using a disorder model for the twinned crystals in which molecules stack in one direction along the $\overline{4}$ axis in some

Fig. 1 Molecular structure of $({}^{Bu}PCP)Ir(\eta^2-O_2)_2$ (6), with thermal ellipsoids shown at 50% probability. Selected bond lengths (A) and angles (deg): Ir(1)–O(1) 2.008(10); Ir(1)–O(2) 2.040(9); O(1)–O(2) 1.54(3); Ir(1)–C(1) 2.023(12); Ir(1)–P(1) 2.380(4); O(1)–Ir(1)–C(1) 87.3(8); O(1)–Ir(1)–O(2) 44.7(9); O(2)–O(1)–Ir(1) 68.7(7); O(1)–O(2)– Ir(1) 66.6(7).

aThe Center for Enabling New Technologies through Catalysis (CENTC), Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, 98195-1700, USA

b X-Ray Crystallographic Facility, Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA

 \dagger Electronic supplementary information (ESI) available: Full experimental details and crystallographic data for 6. CCDC reference number 678650. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/b802739k

domains of the $I\bar{4}$ crystals but in the opposite direction in other domains. The connectivity is established, but due to the disorder, the bond lengths are not well defined. The structure of the (pincer)iridium-bis(dioxygen) complex, $(^{tBu}PCP)Ir$ $(\eta^2$ -O₂)₂ (6) is shown in Fig. 1. A similar "trigonal bipyramidal'' structure has been reported for an Ir^{III} peroxo ethylene complex.⁸ While the refined O–O distance of 1.54(3) \AA is comparable to that in iridium peroxo complexes, $5f,9$ its limited accuracy prevents any conclusion as to whether 6 is best described as an Ir^V-bis(peroxo) complex, an Ir^{III}-bis(superoxo) complex or some combination.

Under vacuum, colorless 6 cleanly forms the bright green 7, which is assigned as the 5-coordinate mono-peroxo Ir^{III} complex (t^{Bu} PCP)Ir(η^2 -O₂) (eqn (1)). Treatment of 7 with O₂ gives 6 by ¹H and ³¹ $P{\text{H}}$ NMR, establishing the reversible equilibrium $(K_{eq} \approx 10 \text{ atm}^{-1})$ in eqn (1).

The IR spectrum of 7 in a KBr pellet has a band at 893.5 cm⁻¹ tentatively assigned as ν (O-O); it is absent in the ¹⁸Olabeled complex.¹⁰ Attempts to obtain resonance Raman spectra of 6 have been unsuccessful due to its limited optical absorbance and nominal stability. Characteristic of latemetal peroxo complexes,¹¹ 7 reacts with SO₂ to give the sulfato complex, $({}^{tBu}PCP)Ir(\kappa^2-SO_4)$ (8), which has been characterized by IR, ¹H, and ³¹ $P{\text{H}}$ NMR spectroscopies.⁷

The dihydride complex (^{Bu}PCP)Ir(H)₂ (3) reacts with 5 atm O_2 to give a mixture of 6 and a new species 9 in a ratio \sim 2 : 1 (eqn (2)). Trace amounts of 7 and (t^{Bu} PCP)Ir(H)(OH) (4) were also observed. Over time the amount of 9, 7, and 4 decreased and ultimately 6 was the sole product observed by 1 H and 31 P NMR. Complex 4 was identified by comparison with NMR spectra of an authentic sample, particularly the hydride signal at -31.0 ppm.^{3d} Independently synthesized 4 was converted by 5 atm of $O₂$ to cleanly give 6 in *ca*. 30 minutes. Monitoring the reaction of 3 with 1 atm O_2 by ¹H NMR showed the appearance and growth of a peak for water, which gradually shifted under the tert-butyl signals.

Complex 9 is tentatively assigned as the *trans*-dihydride peroxo complex trans-(^{tBu}PCP)Ir(H)₂(O₂) based on a hydride signal at -6.8 ppm in the 1 H NMR which integrates to two protons relative to the methylene protons of the ligand. This complex appears to be analogous to trans-dihydride species $\left(\frac{i\text{Pr}}{\text{PCP}}\right)\text{Ir}(\text{CO})(\text{H})_2^{12a}$ $\left[\left(\frac{i\text{Bu}}{\text{PNP}}\right)\text{Ir}(\text{CO})(\text{H})_2\right]\text{PF}_6$ and $({}^{tBu}PNP)Ir(Ph)(H)_2^{12c}$ all of which have hydride signals between -6 and -10 ppm.

The acetylide $(^{tBu}PCP)Ir(H)(CCPh)$ (5) also reacted with 5 atm $O₂$ to very rapidly form 6. Remarkably, removal of the $O₂$ by freeze–pump–thaw degassing yielded not only 7, but also regenerated 5 (22%) (eqn (3)). This reaction indicates that not only can 6 convert to 7 under vacuum, but that the dioxygen ligand of 7 can also apparently be displaced.

The most likely pathway for the reactions of $({}^{tBu}PCP)Ir(H)(X)$ with oxygen to yield 7 is O₂-induced reductive elimination of HX from $({}^{tBu}PCP)Ir(H)(X)$. O₂-promoted reductive elimination of C–O and C–N bonds from Ni^{II} has been reported.¹³ Notably, the dihydride and acetylide complexes, 3 and 5, do not readily reductively eliminate at 298 K in the absence of O_2 ,^{3e,14} ruling out pre-equilibrium loss of HX followed by O_2 binding to Ir^I. The tentative identification of 9 as a dihydride-peroxo complex, in essence an O_2 -adduct of 3, indicates that O_2 coordination may be involved (eqn (4)), although a cis isomer would appear more likely to lead to reductive elimination. In an attempt to observe a similar adduct with an iridium hydrocarbyl complex, $(^{Bu}PCP)Ir(H)(tolyl)$ (2a) was reacted with 5 atm of O₂ at 253 K in toluene, but the sole product was 6, similar to the 298 K reaction between 2 and O_2 . The hydrido-chloride complex 1 is inert, presumably because loss of HCl from the metal center is unfavorable.¹⁵ The displacement of O_2 from 7 by HCCPh would be expected to proceed by a similar associative mechanism.

$$
\underbrace{\left\{\begin{matrix}P(^{1}BU)_{2} & & & \\ & \ddots & X & & \\ & & \ddots & Y & \\ & & & & P(^{1}BU)_{2}}\end{matrix}\right\}}_{P(^{1}BU)_{2}}\left\{\underbrace{\left\{\begin{matrix}P(^{1}BU)_{2} \\ \vdots & X & \\ & \ddots & Y & \\ & & \ddots & \\ & & & P(^{1}BU)_{2}}\end{matrix}\right\}}_{P(^{1}BU)_{2}}\right\}\xrightarrow{+IX\atop}\underbrace{\left\{\begin{matrix}P(^{1}BU)_{2} \\ \vdots & \ddots & \\ & & \ddots & \\ & & & P(^{1}BU)_{2}}\end{matrix}\right\}}_{T}\qquad(4)
$$

Thus, in contrast to recent reports of O_2 insertion into metal–hydride bonds,^{2,16} the primary reaction observed for the Ir(III) hydrocarbyl hydride species with $O₂$ is C–H reductive elimination and the eventual formation of an iridium bis(dioxygen) complex without generation of oxygenated organic products. In the reaction of 2 with O_2 , neither hydroxyphenyl nor hydrido-phenoxy complexes were observed by ¹H NMR spectroscopy, and no phenol was seen by GC. However, the formation of some Ir^{III} hydrido hydroxide 4 in the reaction of 3 with O_2 indicates that oxygen insertion may be possible in this system.

The peroxo complexes themselves are not especially reactive. For instance, they are inert to ethylene and cyclohexene. Complex 6 is a slow catalyst for the oxidation of PPh₃ to OPPh₃ by O_2 , giving 3.4 turnovers over three days under 5 atm of O_2 in C_6D_6 (by ¹H NMR and GC/MS). Surprisingly, the mono-peroxo complex 7 does not oxidize PPh₃, perhaps due to the instability of an intermediate oxo complex. Treatment of isolated 7 with 5 atm H_2 gives the tetrahydride 10 (eqn (5)), which can also be readily formed by addition of H_2 to 3. Similarly, $7 + D_2$ yields (^{Bu}PCP)Ir(D)₄ (10-d₄) and D₂O (by 2 H NMR).

In summary, a number of iridium pincer hydride compounds $($ ^{tBu}PCP)Ir(H)(X) were found to react with O₂ to give iridium complexes with one or two bound dioxygen molecules, $\binom{n}{k} \text{TPCP} \text{Ir}(O_2)_n$, $n = 1$ (7), or 2 (6). Dioxygen in most cases appears to promote reductive elimination of HX rather than inserting into an Ir–H or Ir–C bond. Yet the peroxo complex 7 reacts with hydrogen to form water and the tetrahydride complex 10. This type of reaction could be a potential alternative to more traditional hydrogen scavengers such as t-butylethylene. Studies are continuing in order to more fully develop the organometallic chemistry of $O₂$ and understand the basic pathways for reactions of O_2 with organometallic compounds.

Support from the NSF Center for Enabling New Technologies through Catalysis (CENTC), Grant No.'s 0650456 & 0434568, is gratefully acknowledged. We thank J. R. Frisch and L. Que, Jr. for their efforts to obtain Raman spectra of 6 and 7, and A. S. Goldman and M. Kanzelberger for helpful discussions.

Notes and references

 \ddagger Caution should always be taken when working with organic solvents under pressures of $O₂$.

- 1 (a) S. S. Stahl, Angew. Chem., Int. Ed., 2004, 43, 3400; (b) R. Sheldon and J. K. Kochi, Metal Catalysed Oxidations of Organic Compounds, Academic Press, New York, 1981; (c) Dioxygen Activation and Homogeneous Catalytic Oxidation, ed. L. I. Simándi, Elsevier, New York, 1991; (d) B. R. Dible and M. S. Sigman, J. Am. Chem. Soc., 2003, 125, 872; (e) S. S. Stahl, Science, 2005, 309, 1824.
- 2 (a) M. C. Denney, N. A. Smythe, K. L. Cetto, R. A. Kemp and K. I. Goldberg, J. Am. Chem. Soc., 2006, 128, 2508; (b) M. M. Konnick and S. S. Stahl, J. Am. Chem. Soc., 2008, 130, 5733.
- 3 (a) C. J. Moulton and B. L. Shaw, J. Chem. Soc., Dalton Trans., 1976, 1020; (b) I. Göttker-Schnetmann, P. S. White and M. Brookhart, Organometallics, 2004, 23, 1766; (c) M. Gupta, C. Hagen, W. C. Kaska, R. E. Cramer and C. M. Jensen, J. Am. Chem. Soc., 1997, 119, 840; (d) D. Morales-Morales, D. W. Lee, Z. Wang and C. M. Jensen, Organometallics, 2001, 20, 1144; (e) R. Ghosh, X. Zhang, P. Achord, T. J. Emge, K. Krogh-Jespersen and A. S. Goldman, J. Am. Chem. Soc., 2007, 129, 853.
- 4 (a) M. Gupta, C. Hagen, R. J. Flesher, W. C. Kaska and C. M. Jensen, Chem. Commun., 1996, 2083; (b) F. Liu, E. B. Pak, B. Singh, C. M. Jensen and A. S. Goldman, J. Am. Chem. Soc., 1999, 121, 4086.
- 5 (a) L. Vaska, Science, 1963, 140, 809; (b) D. M. Roundhill, G. H. Allen, R. A. Bechtold and W. B. Beaulieu, Inorg. Chim. Acta, 1981, 54, L99; (c) S. Gopinathan, K. Joseph and C. Gopinathan, Polyhedron, 1985, 4, 955; (d) H. J. Lawson and J. D. Atwood, J. Am. Chem. Soc., 1989, 111, 6223; (e) C. Bianchini, A. Meli, M. Peruzzini and F. Vizza, J. Am. Chem. Soc., 1990, 112, 6726; (f) P. Barbaro, C. Bianchini, F. Laschi, S. Midollini, S. Moneti, G. Scapacci and P. Zanello, *Inorg. Chem.*, 1994, 33, 1622.
- 6 (a) Only one 5-coordinate iridium peroxo complex has been reported, in the supporting information of B. DeBoef, S. J. Pastine and D. Sames, J. Am. Chem. Soc., 2004, 126, 6556; (b) For examples of unsaturated $Rh(O_2)$ complexes, see J. M. Praetorius, D. P. Allen, R. Wang, J. D. Webb, F. Grein, P. Kennepohl and C. M. Crudden, J. Am. Chem. Soc., 2008, 130, 3724 and references therein.
- 7 See ESI for full experimental and structural details†.
- 8 B. de Bruin, T. P. J. Peters, J. B. M. Wilting, S. Thewissen, J. M. M. Smits and A. W. Gal, Eur. J. Inorg. Chem., 2002, 10, 2671.
- 9 (a) M. J. Nolte, E. Singleton and M. Laing, J. Am. Chem. Soc., 1975, 97, 6396; (b) A. Mezzetti, V. Novelli, A. Del Zotto and P. Rigo, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1987, 43, 425; (c) J.-C. Wang, L.-Y. Chou and W.-Y. Hsien, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 1994, 50, 879; (d) H. Lebel, C. Ladjel, F. Bélanger-Gariépy and F. Schaper, J. Organomet. Chem., 2008, 693, 2645.
- 10 The calculated $v(^{18}O^{-18}O)$ of 842 cm⁻¹ [from $v = (1/2\pi)(k_{ab}/\mu_{ab})^{1/2}$], overlaps with ligand stretches and the IR spectrum of a mixed labeled, $16/18$ O₂, sample of 7 was broad and inconclusive⁷.
- 11 J. S. Valentine, Chem. Rev., 1973, 73, 235.
- 12 (a) B. Rybtchinski, Y. Ben-David and D. Milstein, Organometallics, 1997, **16**, 3786; (b) S. M. Kloek, D. M. Heinekey and K. I. Goldberg, Organometallics, 2006, 25, 3007; (c) E. Ben-Ari, G. Leitus, L. J. Shimon and D. Milstein, J. Am. Chem. Soc., 2006, 128, 15390.
- 13 (a) R. Han and G. L. Hillhouse, J. Am. Chem. Soc., 1997, 119, 8135; (b) B. L. Lin, C. R. Clough and G. L. Hillhouse, J. Am. Chem. Soc., 2002, 124, 2890.
- 14 K. Krogh-Jespersen, M. Czerw, N. Summa, K. B. Renkema, P. D. Achord and A. S. Goldman, J. Am. Chem. Soc., 2002, 124, 11404.
- 15 There was no evidence for an O_2 adduct of 1 by NMR under 2.6 atm O_2 at 200 K in toluene- d_8 . In addition, no initial reaction was observed in a benzene solution of 1 and O_2 (5 atm) in the presence of N^{*i*}Pr₂Et, which should trap any HCl. Multiple, unidentifiable products were present after a couple of days, but neither 6 nor 7 was observed.
- 16 (a) T. T. Wenzel, Stud. Surf. Sci. Catal., 1991, 66, 545; (b) D. D. Wick and K. I. Goldberg, J. Am. Chem. Soc., 1999, 121, 11900; (c) A. Bakac, J. Photochem. Photobiol., A, 2000, 132, 87; (d) S. Thyagarajan, C. C. Incarvito, A. L. Rheingold and K. H. Theopold, Chem. Commun., 2001, 2198.